organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Alexander J. Blake,* Stuart J. Hill and Peter Hubberstey

School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, England

Correspondence e-mail: a.j.blake@nottingham.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.037 wR factor = 0.100 Data-to-parameter ratio = 11.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-Dihydroxymethyl-3*H*-benzoimidazol-1-ium chloride monohydrate

The title compound, $C_8H_9N_2O_2^+ \cdot Cl^- \cdot H_2O$, comprises $C_8H_9N_2O_2^+$ cations, chloride anions and lattice water molecules. Individual components are linked into an $R_3^2(8)$ hydrogenbonded ring to form the crystallographic asymmetric unit. The asymmetric units are linked by hydrogen-bonding contacts to form an extended three-dimensional structure. Received 29 October 2001 Accepted 21 November 2001 Online 30 November 2001

Comment

The crystallographic asymmetric unit of 2-dihydroxymethyl-3*H*-benzoimidazol-1-ium chloride monohydrate [1*H*-benzimidazole-2-methanediol monohydrochloride monohydrate], (I), contains a single 2-dihydroxymethyl-3*H*-benzoimidazol-1ium cation, one chloride anion and one water molecule linked by one O-H···O and two O-H···Cl hydrogen bonds to form an $R_3^2(8)$ ring (Fig. 1). The short interatomic distances and near-linear interatomic angles of these hydrogen bonds (O1-H11···Cl1, O211-H211···Cl1 and O212-H212···O1; see Table 1) are indicative of their significance.

The long-range structure can be considered in a number of different ways. Our preferred description is that of mutually perpendicular asymmetric units linked by $O-H\cdots Cl$ ($O1-H12\cdots Cl1^i$; see Table 1) and $N-H\cdots O$ ($N3-H3\cdots O212^{iii}$; see Table 1) contacts in the form of an $R_5^4(18)$ motif (Fig. 2) to generate a crosslinked double-stranded ribbon (Fig. 3) which propagates in the *b* direction. The ribbons are linked by pairs of centrosymmetrically related $N-H\cdots Cl$ contacts ($N1-H1\cdots Cl1^{ii}$; see Table 1) in the form of an $R_4^2(14)$ motif (Fig. 4) to give a two-dimensional sheet structure parallel to the (010) plane. The sheets, the thickness of which is equivalent to the length of the *a* axis, interdigitate with a limited $\pi-\pi$ interaction between crystallographically centrosymmetrically related

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 3

A projection of the structure approximately on to the (100) plane showing the combination of crosslinked double-stranded ribbons to form two-dimensional sheets. Atoms are coloured as in Fig. 2.

Figure 1

The asymmetric unit of the title compound showing the atom-numbering scheme and hydrogen-bonding contacts. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The $R_5^4(18)$ motif within which mutually perpendicular asymmetric units are hydrogen-bonded to form a crosslinked double-stranded ribbon. Atoms are coloured as follows: C black, N blue, O red, Cl green, H small yellow circles. Benzene rings have been omitted for clarity. [Symmetry codes: (iv) x, 1+y, z; (v) 1-x, 1/2+y, 3/2-z.] aromatic units (Fig. 5). The interplanar separation [3.642 (3) Å], C7···C8(2 - x, 1 - y, 2 - z) distance [3.779 (4) Å] and H7···C8 distance (3.647 Å) are indicative of the weakness of this π - π interaction.

Experimental

The title compound was obtained as a by-product of the reaction of 1,2-phenylenediamine (2.44 g, 22.5 mmol) with iminodiacetic acid (1.50 g, 11.2 mmol) in aqueous hydrochloric acid (6 M, 40 ml). This reaction is a variant of the method of Casella *et al.* (1996) for the preparation of bis[1-methylbenzimidazol-2-yl)methyl]amine hydrochloride. Crystals suitable for diffraction studies were grown from acetonitrile solution.

Crystal data	
$C_8H_9N_2O_2^+ \cdot Cl^- \cdot H_2O$	$D_x = 1.463 \text{ Mg m}^{-3}$
$M_r = 218.64$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 22
a = 12.513 (4) Å	reflections
b = 4.977 (3) Å	$\theta = 13.3 - 17.4^{\circ}$
c = 16.388 (9) Å	$\mu = 0.37 \text{ mm}^{-1}$
$\beta = 103.38 \ (6)^{\circ}$	T = 150 (2) K
$V = 992.9 (9) \text{ Å}^3$	Tablet, colourless
Z = 4	$0.48 \times 0.29 \times 0.19 \text{ mm}$
Data collection	
Stoe Stadi-4 four-circle	$\theta_{\rm max} = 25.0^{\circ}$
diffractometer	$h = -14 \rightarrow 14$
ω/θ scans	$k = 0 \rightarrow 5$
Absorption correction: none	$l = 0 \rightarrow 19$
1724 measured reflections	3 standard reflections
1724 independent reflections	frequency: 60 min
1470 reflections with $I > 2\sigma(I)$	intensity decay: none

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.038P)^2]$
R[F > 20(F)] = 0.057 $wR(F^2) = 0.100$	+ 0.848 <i>P</i>] where $P = (F_o^2 + 2F_c^2)/3$
S = 1.21 1724 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.24 \text{ e } \text{\AA}^{-3}$
145 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
01-H11···Cl1	0.83 (2)	2.32 (2)	3.132 (2)	169 (3)
O211-H211Cl1	0.82 (2)	2.25 (2)	3.069 (2)	178 (3)
O212−H212···O1	0.82 (2)	1.86(2)	2.664 (3)	167 (3)
$O1-H12\cdots Cl1^i$	0.83 (2)	2.36 (2)	3.173 (2)	168 (3)
N1-H1···Cl1 ⁱⁱ	0.88 (2)	2.27 (2)	3.129 (2)	165 (2)
N3-H3···O212 ⁱⁱⁱ	0.88 (2)	1.95 (2)	2.819 (3)	170 (2)

Symmetry codes: (i) x, y - 1, z; (ii) 1 - x, 2 - y, 2 - z; (iii) $1 - x, y - \frac{1}{2}, \frac{3}{2} - z$.

H atoms were found from ΔF syntheses (O and N) or placed geometrically (C); thereafter they were refined respectively with distance restraints (N-H = 0.88, O-H = 0.82 and water H···H = 1.33 Å) and using a riding model (C-H = 0.93 and 0.98 Å for aromatic and methine H, respectively).

Data collection: *STADI*4 (Stoe & Cie, 1995); cell refinement: *Stadi*4; data reduction: *X-RED* (Stoe & Cie, 1995); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2001).

We thank EPSRC for the award of a diffractometer and for a maintenance grant to SJH.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Casella, L., Caruga, O., Gullotti, M., Doldi, S. & Frassoni, M. (1996). *Inorg. Chem.* **35**, 1101–1113.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Figure 4

The $R_4^2(14)$ motif by which the ribbons are linked to form a sheet structure. Atoms are coloured as in Fig. 2. [Symmetry code: (ii) 1-x, 2-y, 2-z.]

Figure 5

A projection of the structure approximately on to the (010) plane showing the interdigitation of the sheets. Atoms are coloured as in Fig. 2.

Spek, A. L. (2001). *PLATON*. Utrecht University, The Netherlands.
Stoe & Cie (1995). *STADI*4 and *X-RED*. Stoe and Cie, Darmstadt, Germany.
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). *CAMERON*. Chemical Crystallography Laboratory, Oxford, England.