Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Alexander J. Blake,* Stuart J. Hill and Peter Hubberstey

School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, England

Correspondence e-mail:
a.j.blake@nottingham.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.037$
$w R$ factor $=0.100$
Data-to-parameter ratio $=11.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Dihydroxymethyl-3H-benzoimidazol-1-ium chloride monohydrate

The title compound, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, comprises $\mathrm{C}_{8} \mathrm{H}_{9}-$ $\mathrm{N}_{2} \mathrm{O}_{2}{ }^{+}$cations, chloride anions and lattice water molecules. Individual components are linked into an $R_{3}^{2}(8)$ hydrogenbonded ring to form the crystallographic asymmetric unit. The asymmetric units are linked by hydrogen-bonding contacts to form an extended three-dimensional structure.

Comment

The crystallographic asymmetric unit of 2-dihydroxymethyl$3 H$-benzoimidazol-1-ium chloride monohydrate [1H-benz-imidazole-2-methanediol monohydrochloride monohydrate], (I), contains a single 2-dihydroxymethyl-3 H -benzoimidazol-1ium cation, one chloride anion and one water molecule linked by one $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and two $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds to form an $R_{3}^{2}(8)$ ring (Fig. 1). The short interatomic distances and near-linear interatomic angles of these hydrogen bonds ($\mathrm{O} 1-\mathrm{H} 11 \cdots \mathrm{Cl} 1, \mathrm{O} 211-\mathrm{H} 211 \cdots \mathrm{Cl} 1$ and $\mathrm{O} 212-\mathrm{H} 212 \cdots \mathrm{O} 1$; see Table 1) are indicative of their significance.

(I)

The long-range structure can be considered in a number of different ways. Our preferred description is that of mutually perpendicular asymmetric units linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}(\mathrm{O} 1-$ $\mathrm{H} 12 \cdots \mathrm{Cl} 1^{\mathrm{i}}$; see Table 1) and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}\left(\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 212^{\mathrm{iiii}}\right.$; see Table 1) contacts in the form of an $R_{5}^{4}(18)$ motif (Fig. 2) to generate a crosslinked double-stranded ribbon (Fig. 3) which propagates in the b direction. The ribbons are linked by pairs of centrosymmetrically related $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ contacts ($\mathrm{N} 1-$ $\mathrm{H} 1 \cdots \mathrm{Cl}^{1 \mathrm{iii}}$; see Table 1) in the form of an $R_{4}^{2}(14)$ motif (Fig. 4) to give a two-dimensional sheet structure parallel to the (010) plane. The sheets, the thickness of which is equivalent to the length of the a axis, interdigitate with a limited $\pi-\pi$ interaction between crystallographically centrosymmetrically related

Received 29 October 2001
Accepted 21 November 2001
Online 30 November 2001
\qquad

Figure 1
The asymmetric unit of the title compound showing the atom-numbering scheme and hydrogen-bonding contacts. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
The $R_{5}^{4}(18)$ motif within which mutually perpendicular asymmetric units are hydrogen-bonded to form a crosslinked double-stranded ribbon. Atoms are coloured as follows: C black, N blue, O red, Cl green, H small yellow circles. Benzene rings have been omitted for clarity. [Symmetry codes: (iv) $x, 1+y, z$; (v) $1-x, 1 / 2+y, 3 / 2-z$.]

Figure 3
A projection of the structure approximately on to the (100) plane showing the combination of crosslinked double-stranded ribbons to form two-dimensional sheets. Atoms are coloured as in Fig. 2.
aromatic units (Fig. 5). The interplanar separation $[3.642(3) \AA], \quad \mathrm{C} 7 \cdots \mathrm{C} 8(2-x, \quad 1-y, \quad 2-z) \quad$ distance [3.779 (4) \AA] and H7 \cdots C8 distance ($3.647 \AA$) are indicative of the weakness of this $\pi-\pi$ interaction.

Experimental

The title compound was obtained as a by-product of the reaction of 1,2-phenylenediamine ($2.44 \mathrm{~g}, 22.5 \mathrm{mmol}$) with iminodiacetic acid $(1.50 \mathrm{~g}, 11.2 \mathrm{mmol})$ in aqueous hydrochloric acid ($6 M, 40 \mathrm{ml}$). This reaction is a variant of the method of Casella et al. (1996) for the preparation of bis[1-methylbenzimidazol-2-yl)methyl]amine hydrochloride. Crystals suitable for diffraction studies were grown from acetonitrile solution.
Crystal data
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O} \quad D_{x}=1.463 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=218.64$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=12.513$ (4) A
$b=4.977$ (3) \AA
$c=16.388$ (9) \AA
$\beta=103.38(6)^{\circ}$
$V=992.9(9) \AA^{3}$
$Z=4$

Data collection

Stoe Stadi-4 four-circle
\quad diffractometer
ω / θ scans
Absorption correction: none
1724 measured reflections
1724 independent reflections
1470 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& \theta_{\max }=25.0^{\circ} \\
& h=-14 \rightarrow 14 \\
& k=0 \rightarrow 5 \\
& l=0 \rightarrow 19 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \text { min } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.038 P)^{2}\right. \\
& \quad+0.848 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.100$
$S=1.21$
1724 reflections
145 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 11 \cdots \mathrm{Cl} 1$	0.83 (2)	2.32 (2)	3.132 (2)	169 (3)
$\mathrm{O} 211-\mathrm{H} 211 \cdots \mathrm{Cl} 1$	0.82 (2)	2.25 (2)	3.069 (2)	178 (3)
O212-H212 \cdots O1	0.82 (2)	1.86 (2)	2.664 (3)	167 (3)
$\mathrm{O} 1-\mathrm{H} 12 \cdots \mathrm{Cl} 1^{\text {i }}$	0.83 (2)	2.36 (2)	3.173 (2)	168 (3)
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1^{\text {ii }}$	0.88 (2)	2.27 (2)	3.129 (2)	165 (2)
$\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 212^{\text {iii }}$	0.88 (2)	1.95 (2)	2.819 (3)	170 (2)

Symmetry codes: (i) $x, y-1, z$; (ii) $1-x, 2-y, 2-z$; (iii) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$.
H atoms were found from ΔF syntheses (O and N) or placed geometrically (C); thereafter they were refined respectively with distance restraints $(\mathrm{N}-\mathrm{H}=0.88, \mathrm{O}-\mathrm{H}=0.82$ and water $\mathrm{H} \cdots \mathrm{H}=$ $1.33 \AA$) and using a riding model $(\mathrm{C}-\mathrm{H}=0.93$ and $0.98 \AA$ for aromatic and methine H , respectively).

Data collection: STADI4 (Stoe \& Cie, 1995); cell refinement: Stadi4; data reduction: X-RED (Stoe \& Cie, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2001).

We thank EPSRC for the award of a diffractometer and for a maintenance grant to SJH.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Casella, L., Caruga, O., Gullotti, M., Doldi, S. \& Frassoni, M. (1996). Inorg. Chem. 35, 1101-1113.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Figure 4
The $R_{4}^{2}(14)$ motif by which the ribbons are linked to form a sheet structure. Atoms are coloured as in Fig. 2. [Symmetry code: (ii) 1-x, 2-y, $2-z$.]

Figure 5
A projection of the structure approximately on to the (010) plane showing the interdigitation of the sheets. Atoms are coloured as in Fig. 2.

Spek, A. L. (2001). PLATON. Utrecht University, The Netherlands. Stoe \& Cie (1995). STADI4 and X-RED. Stoe and Cie, Darmstadt, Germany. Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

